Abstract

There is still a large gap in our understanding between the functional complexity of cells and the reconstruction of partial cellular functions in vitro from purified or engineered parts. Here we have introduced artificial vesicles of defined composition into living cells to probe the capacity of the cellular cytoplasm in dealing with foreign material and to develop tools for the directed manipulation of cellular functions. Our data show that protein-free liposomes, after variable delay times, are captured by the Golgi apparatus that is reached either by random diffusion or, in the case of large unilamellar vesicles, by microtubule-dependent transport via a dynactin/dynein motor complex. However, insertion of early endosomal SNARE proteins suffices to convert liposomes into trafficking vesicles that dock and fuse with early endosomes, thus overriding the default pathway to the Golgi. Moreover, such liposomes can be directed to mitochondria expressing simple artificial affinity tags, which can also be employed to divert endogenous trafficking vesicles. In addition, fusion or subsequent acidification of liposomes can be monitored by incorporation of appropriate chemical sensors. This approach provides an opportunity for probing and manipulating cellular functions that cannot be addressed by conventional genetic approaches. We conclude that the cellular cytoplasm has a remarkable capacity for self-organization and that introduction of such macromolecular complexes may advance nanoengineering of eukaryotic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.