Abstract
An understanding of the interplay between the spin and electronic degrees of freedom of polarons migrating along conjugated polymer molecules is required to further the development of organic electronics and spintronics. In this study, a novel experimental approach is proposed for studying spin-correlated polaron pairs (PPs) on an isolated molecule of a conjugated polymer. The polymer molecule of interest is immobilized in a nonluminescent poly(vinyl chloride) matrix, which is irradiated with X-rays to rapidly form secondary PPs on the conjugated polymer. The migration, recombination, and evolution of the spin state of the PPs can be monitored at nanosecond resolution by observing the recombination fluorescence under different magnetic fields. Examples supporting this concept are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.