Abstract

Protracted courses of low-daily-dose gamma irradiation elicit high incidences of myeloproliferative disease, principally myeloid leukemia (ML), in beagle dogs. A four-phase preclinical sequence in the induction of ML has been described: (1) suppression, (2) recovery, (3) accommodation, and (4) preleukemic transition. Within this sequence, a critical "early"-occurring hematopoietic target cell event that promotes progression of preclinical phases I and II has been identified and characterized by an acquisition of increased radioresistance to low-LET gamma rays by granulocyte/monocyte lineage-committed progenitor cells (CFU-GM). To gain further insight into the basis of this critical event, the acquired survival response of preleukemic progenitor cells has been probed in vitro with high-LET fission neutrons. For these studies, marrow CFU-GM were isolated from chronically irradiated preleukemic dogs, as well as from nonirradiated controls, subjected to graded doses (0-300 cGy) of either JANUS fission neutrons or 60Co gamma rays, and assayed for survival by a standard cloning assay. Major observations resulting from these assays include the following. First, the acquired radioresistance of preleukemic CFU-GM to low-LET gamma rays noted previously extends to high-LET fission neutrons as well. Relative to control CFU-GM exhibited small but significant increases in radioresistance of about 10 cGy with an average D0 value of 38 (+/- 2.3) cGy for preleukemic CFU-GM, and 28 (+/- 1.3) cGy for the control levels, the CFU-GM irradiated within a marrow dose range of 10-75 cGy. Second, at higher neutron doses (150-600 cGy), fractional survival of both control and preleukemic CFU-GM declined nonexponentially, suggesting the existence of a small, radioresistant subpopulation constituting about 2% of the total marrow CFU-GM within normal nonirradiated dogs, and a 15% fraction of the progenitor cell population in preleukemic marrow (preclinical phases II-IV). The latter is most likely the result of a normally minor subpopulation gaining a growth advantage due to its inherent radioresistance and clonally expanding in the strong selective pressure of chronic marrow irradiation in vivo. We speculate that these qualitative/quantitative changes in the function of progenitor cells foster the initiation of aberrant regenerative hematopoiesis characteristic of early evolving radiation leukemogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call