Abstract

Size-selected clusters are important model catalysts because of their narrow size and compositional distributions, as well as enhanced activity and selectivity in many reactions. Still, their structure-activity relationships are, in general, elusive. The main reason is the difficulty in identifying and quantitatively characterizing the catalytic active site in the clusters when it is confined within subnanometric dimensions and under the continuous structural changes the clusters can undergo in reaction conditions. Using machine learning approaches for analysis of the operando X-ray absorption near-edge structure spectra, we obtained accurate speciation of the CuxPdy cluster types during the propane oxidation reaction and the structural information about each type. As a result, we elucidated the information about active species and relative roles of Cu and Pd in the clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.