Abstract
We report results from a comprehensive follow-up observing campaign of the afterglow of GRB 030226, including VLT spectroscopy, VLT polarimetry, and Chandra X-ray observations. In addition, we present BOOTES-1 wide-field observations at the time of the occurrence of the burst. First observations at ESO started 0.2 days after the event when the gamma ray burst (GRB) afterglow was at a magnitude of R ∼ 19 and continued until the afterglow had faded below the detection threshold (R > 26). No underlying host galaxy was found. The optical light curve shows a break around 0.8 days after the burst, which is achromatic within the observational errors, supporting the view that it was due to a jetted explosion. Close to the break time the degree of linear polarization of the afterglow light was less than 1.1%, which favors a uniform-jet model rather than a structured one. VLT spectra show two absorption line systems at redshifts z = 1.962 ± 0.001 and 1.986 ± 0.001, placing the lower limit for the redshift of the GRB close to 2. We emphasize that the kinematics and the composition of the absorbing clouds responsible for these line systems are very similar to those observed in the afterglow of GRB 021004. This corroborates the picture in which at least some GRBs are physically related to the explosion of a Wolf-Rayet star.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.