Abstract

AbstractWhile Type I and Type II photosensitizers are often carefully tailored to achieve their respective advantages in treating different cancers, the identifications of the Type I and II mechanisms as such, the key reaction intermediates, and the consequent oxidation products of the substrates have never been easy. Using our unique home‐built field‐induced droplet ionization mass spectrometry (FIDI‐MS) method that selectively samples molecules at the air–water interface, here we show the facile determination of both Type I and II mechanisms of a poster‐child photosensitizer, temoporfin, without the addition of any probes. The unstable doublet radical resulting from the hydrogen abstraction by the triplet temoporfin through the Type I mechanism is captured, manifesting the in situ advantage of FIDI‐MS. We anticipate that the method developed in this study can be widely utilized in the future designs of novel photosensitizers and the screening of their photosensitization mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.