Abstract

In X-ray holographic near-field imaging the resolution and image quality depend sensitively on the beam. Artifacts are often encountered due to the strong focusing required to reach high resolution. Here, two schemes for reconstructing the complex-valued and extended wavefront of X-ray nano-probes, primarily in the planes relevant for imaging (i.e. focus, sample and detection plane), are presented and compared. Firstly, near-field ptychography is used, based on scanning a test pattern laterally as well as longitudinally along the optical axis. Secondly, any test pattern is dispensed of and the wavefront reconstructed only from data recorded for different longitudinal translations of the detector. For this purpose, an optimized multi-plane projection algorithm is presented, which can cope with the numerically very challenging setting of a divergent wavefront emanating from a hard X-ray nanoprobe. The results of both schemes are in very good agreement. The probe retrieval can be used as a tool for optics alignment, in particular at X-ray nanoprobe beamlines. Combining probe retrieval and object reconstruction is also shown to improve the image quality of holographic near-field imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.