Abstract

Electron energy distributions (EED) in strongly magnetized (∼0.3 T), low-pressure (∼0.2 Pa) helium plasmas of the toroidal device “Blaamann” [K. Rypdal et al., Plasma Phys. Controlled Fusion 36, 1099 (1994)] have been measured. In the analysis of measurements, one applies a simplified expression for the limit of a strongly magnetized plasma relating the electron energy distribution to the first derivative of electron probe current with respect to the probe potential. It is shown that for the conditions investigated this approximation gives the same electron densities and slightly lower temperatures (up to 10%) as the kinetic theory for arbitrary magnetic field strength. Cylindrical probes, which are oriented along and perpendicular to the magnetic field, are used in the measurements. It is shown that these probes give nearly identical results. However, the probe that is oriented perpendicular to the magnetic field can give the electron energy distribution in a wider energy range and with better accuracy. The cross-field diffusion coefficient of electrons near the probe is estimated and shown to be classical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.