Abstract
Neglecting genotype-by-environment interactions in multienvironment trials (MET) increases the risk of flawed cultivar recommendations for growers. Recent advancements in probability theory coupled with cutting-edge software offer a more streamlined decision-making process for selecting suitable candidates across diverse environments. Here, we present the user-friendly ProbBreed package in R, which allows breeders to calculate the probability of a given genotype outperforming competitors under a Bayesian framework. This article outlines the package's basic workflow and highlights its key features, ranging from MET model fitting to estimating the per se and pairwise probabilities of superior performance and stability for selection candidates. Remarkably, only the selection intensity is required to compute these probabilities. By democratizing this complex yet efficient methodology, ProbBreed aims to enhance decision-making and ultimately contribute to more accurate cultivar recommendations in breeding programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.