Abstract

In 2004, two clusters of earthquakes occurred in the central part of the Cascadia forearc, which displays several characteristics indicative of along-strike and downdip variations in plate coupling. Moment tensor analysis for the main shock in each cluster indicates that both events, which had magnitudes of 4.9 and 4.8, were compatible with low-angle thrust motion on fault planes dipping 6°–15° to the east, consistent with the plate boundary dip of ∼12°. By tracing rays through a high-resolution two-dimensional crustal velocity model to match arrival times of secondary arrivals (pP and PmP), we estimate that the source depth was 9–11 km for the M4.9 event and 15–17 km for the M4.8 event. We conclude that these earthquakes probably represent seismogenic thrust motion on the nominally locked or transitional part of the Cascadia megathrust, updip of where episodic tremor and slip (ETS) have been documented. Continued high-resolution observations of seismicity and improved crustal models are needed to confirm whether apparent temporal correlations between ETS and continued seismic activity in these clusters indicate stress transfer along the megathrust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.