Abstract

A general theory is proposed for the probability of different outcomes of success and failure of component resolution, when complex mixtures are partially separated by n independent columns. Such a separation is called an n-column separation. An outcome of particular interest is component resolution by at least one column. Its probability is identified with the probability of component resolution by a single column, thereby defining the effective saturation of the n-column separation. Several trends are deduced from limiting expressions of the effective saturation. In particular, at low saturation the probability that components cluster together as unresolved peaks decreases exponentially with the number of columns, and the probability that components cluster together on addition of another column decreases by a factor equal to twice the column saturation. The probabilities of component resolution by n-column and two-dimensional separations also are compared. The theory is applied by interpreting three sets of previously reported retention indices of the 209 polychlorinated biphenyls (PCBs), as determined by GC. The origin of column independence is investigated from two perspectives. First, it is suggested that independence exists when the difference between indices of the same compound on two columns is much larger than the interval between indices required for separation. Second, it is suggested that independence exists when the smaller of the two intervals between a compound and its adjacent neighbors is not correlated with its counterpart on another column.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call