Abstract

Semantic hashing enables computation and memory-efficient image retrieval through learning similarity-preserving binary representations. Most existing hashing methods mainly focus on preserving the piecewise class information or pairwise correlations of samples into the learned binary codes while failing to capture the mutual triplet-level ordinal structure in similarity preservation. In this article, we propose a novel Probability Ordinal-preserving Semantic Hashing (POSH) framework, which for the first time defines the ordinal-preserving hashing concept under a non-parametric Bayesian theory. Specifically, we derive the whole learning framework of the ordinal similarity-preserving hashing based on the maximum posteriori estimation, where the probabilistic ordinal similarity preservation, probabilistic quantization function, and probabilistic semantic-preserving function are jointly considered into one unified learning framework. In particular, the proposed triplet-ordering correlation preservation scheme can effectively improve the interpretation of the learned hash codes under an economical anchor-induced asymmetric graph learning model. Moreover, the sparsity-guided selective quantization function is designed to minimize the loss of space transformation, and the regressive semantic function is explored to promote the flexibility of the formulated semantics in hash code learning. The final joint learning objective is formulated to concurrently preserve the ordinal locality of original data and explore potentials of semantics for producing discriminative hash codes. Importantly, an efficient alternating optimization algorithm with the strictly proof convergence guarantee is developed to solve the resulting objective problem. Extensive experiments on several large-scale datasets validate the superiority of the proposed method against state-of-the-art hashing-based retrieval methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.