Abstract

BackgroundAllometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Using reported clinical data, we apply this concept for evaluating the probability of ventricular fibrillation based on the electrocardiographic ST-segment deviation values.MethodsData collected by previous reports were used to fit an allometric model in order to estimate ventricular fibrillation probability. Patients presenting either with death, myocardial infarction or unstable angina were included to calculate such probability as, VFp = δ + β (ST), for three different ST deviations. The coefficients δ and β were obtained as the best fit to the clinical data extended over observational periods of 1, 6, 12 and 48 months from occurrence of the first reported chest pain accompanied by ST deviation.ResultsBy application of the above equation in log-log representation, the fitting procedure produced the following overall coefficients: Average β = 0.46, with a maximum = 0.62 and a minimum = 0.42; Average δ = 1.28, with a maximum = 1.79 and a minimum = 0.92. For a 2 mm ST-deviation, the full range of predicted ventricular fibrillation probability extended from about 13% at 1 month up to 86% at 4 years after the original cardiac event.ConclusionsThese results, at least preliminarily, appear acceptable and still call for full clinical test. The model seems promising, especially if other parameters were taken into account, such as blood cardiac enzyme concentrations, ischemic or infarcted epicardial areas or ejection fraction. It is concluded, considering these results and a few references found in the literature, that the allometric model shows good predictive practical value to aid medical decisions.

Highlights

  • Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism

  • Since most of cardiac deaths are due to ventricular fibrillation, it can be said that such death, in the end, would be an event that counts as a ventricular fibrillation

  • As possible quantitative criteria to screen out patients of high risk have been attempted with moderate success, but always the degree of uncertainty is rather large

Read more

Summary

Introduction

In general biology, measures the relative growth of a part in relation to the whole living organism. As possible quantitative criteria to screen out patients of high risk (that is, searching for a better answer to the question shall we confine the patient to the coronary unit?) have been attempted with moderate success, but always the degree of uncertainty is rather large. In such endeavor, we might try an appealing and old universal scaling, the allometric law, in principle apparently not related to the cardiac risk overall concept, it might find a place in it and at least deserves to be reminded bringing about first a nice and well carried out paper by Noujaim et al, in 2004 [2]. This is the first use we found of the allometric law in cardiology encouraging us to proceed further up

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.