Abstract

Freeze-avoiding insects must resist freezing or die. A suite of adaptations to low temperatures, including the production of antifreeze proteins, colligative antifreezes (polyols), and dehydration allows most individuals to prevent freezing below the lowest ambient temperatures experienced in situ; however, there can be a wide variance in the minimum temperatures that individuals of freeze-avoiding species reach before freezing. We used logistic regression to explore factors that affect this variance and to estimate the probability of freezing in larvae of the freeze-avoiding beetle Cucujus clavipes puniceus. We hypothesized that water content ≤ 0.5 mg mg −1 dry mass would lead to deep supercooling (avoidance of freezing below −58 °C). We found a significant interaction between water content and ambient below-snow temperature and a significant difference between individuals collected from two locations in Alaska: Wiseman and Fairbanks. Individuals collected in Wiseman deep supercooled with greater water content and to a greater range of ambient temperatures than individuals collected in Fairbanks, leading to significantly different lethal water contents associated with 50% probability of freezing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.