Abstract

Abstract This paper provides some model-theoretic analysis for probability (modal) logic ($PL$). It is known that this logic does not enjoy the compactness property. However, by passing into the sublogic of $PL$, namely basic probability logic ($BPL$), it is shown that this logic satisfies the compactness property. Furthermore, by drawing some special attention to some essential model-theoretic properties of $PL$, a version of Lindström characterization theorem is investigated. In fact, it is verified that probability logic has the maximal expressive power among those abstract logics extending $PL$ and satisfying both the filtration and disjoint unions properties. Finally, by alternating the semantics to the finitely additive probability models ($\mathcal{F}\mathcal{P}\mathcal{M}$) and introducing positive sublogic of $PL$ including $BPL$, it is proved that this sublogic possesses the compactness property with respect to $\mathcal{F}\mathcal{P}\mathcal{M}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.