Abstract
This paper presents a methodology for producing a probability forecast of a turning point in U.S. economy using Composite Leading Indicators. This methodology is based on classical statistical decision theory and uses information-theoretic measurement to produce a probability. The methodology is flexible using as many historical data points as desired. This methodology is applied to producing probability forecasts of a downturn in U.S. economy in the 1970–1990 period. Four probability forecasts are produced using different amounts of information. The performance of these forecasts is evaluated using the actual downturn points and the scores measuring accuracy, calibration, and resolution. An indirect comparison of these forecasts with Diebold and Rudebusch's sequential probability recursion is also presented. It is shown that the performances of our best two models are statistically different from the performance of the three-consecutive-month decline model and are the same as the one for the best probit model. The probit model, however, is more conservative in its predictions than our two models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.