Abstract

We investigate higher dimensional cosmological models in the semiclassical approximation with Hartle-Hawking Boundary conditions, assuming a gravitational action which is described by the scalar curvature with a cosmological constant. In the framework the probability for quantum creation of an inflationary universe with a pair of black holes in a multidimensional universe is evaluated. The probability for creation of a universe with a spatial section with $S^{1}XS^{D -2}$ topology is then compared with that of a higher dimensional de Sitter universe with $S^{D -1}$ spatial topology. It is found that a higher dimensional universe with a product space with primordial black holes pair is less probable to nucleate when the extra dimensions scale factors do not vary in an inflating universe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call