Abstract
We treat the probability distributions for quadratic quantum fields, averaged with a Lorentzian test function, in four-dimensional Minkowski vacuum. These distributions share some properties with previous results in two-dimensional spacetime. Specifically, there is a lower bound at a finite negative value, but no upper bound. Thus arbitrarily large positive energy density fluctuations are possible. We are not able to give closed form expressions for the probability distribution, but rather use calculations of a finite number of moments to estimate the lower bounds, the asymptotic forms for large positive argument, and possible fits to the intermediate region. The first 65 moments are used for these purposes. All of our results are subject to the caveat that these distributions are not uniquely determined by the moments. However, we also give bounds on the cumulative distribution function that are valid for any distribution fitting these moments.We apply the asymptotic form of the electromagnetic energy density distribution to estimate the nucleation rates of black holes and of Boltzmann brains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.