Abstract
In the literature, the use of fractional moments to express the available information in the framework of maximum entropy (MaxEnt) approximation of a distribution F having finite or unbounded positive support, has been essentially considered as a computational tool to improve the performance of the analogous procedure based on integer moments. No attention has been paid to two formal aspects concerning fractional moments, such as conditions for the existence of the maximum entropy approximation based on them or convergence in entropy of this approximation to F. This paper aims to fill this gap by providing proofs of these two fundamental results. In fact, convergence in entropy can be involved in the optimal selection of the order of fractional moments for accelerating the convergence of the MaxEnt approximation to F, to clarify the entailment relationships of this type of convergence with other types of convergence useful in statistical applications, and to preserve some important prior features of the underlying F distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.