Abstract
We consider the solution of the stochastic heat equation \partial_T \mathcal{Z} = 1/2 \partial_X^2 \mathcal{Z} - \mathcal{Z} \dot{\mathscr{W}} with delta function initial condition \mathcal{Z} (T=0)= \delta_0 whose logarithm, with appropriate normalizations, is the free energy of the continuum directed polymer, or the solution of the Kardar-Parisi-Zhang equation with narrow wedge initial conditions. We obtain explicit formulas for the one-dimensional marginal distributions -- the {\it crossover distributions} -- which interpolate between a standard Gaussian distribution (small time) and the GUE Tracy-Widom distribution (large time). The proof is via a rigorous steepest descent analysis of the Tracy-Widom formula for the asymmetric simple exclusion with anti-shock initial data, which is shown to converge to the continuum equations in an appropriate weakly asymmetric limit. The limit also describes the crossover behaviour between the symmetric and asymmetric exclusion processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.