Abstract
Wind energy estimation is pivotal to ensure grid side management and optimal dispatch of wind power. Wind speed distribution for given wind site can be modeled using various probability distribution functions (PDF) like Weibull, Gamma and Log-normal distribution functions. PDFs like Weibull and Log-normal do not fit the real-time wind speed scenarios. In this paper we analyze the PDFs for short-term wind power forecasting for a low wind speed regime based on combined wind speed and wind direction PDF. Short-term wind power forecasting based on \(\varepsilon \)-Support Vector Regression (SVR) and Artificial Neural Network (ANN) was carried for three wind farm sites in Massachusetts. The forecasting results were tested for Mixture density Weibull and Lindley PDFs and in terms of Root mean squared error, Weibull PDF outperformed Lindley PDF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.