Abstract

Probability density function (PDF) of stochastic responses is a critical topic in uncertainty analysis. In this paper, orthogonal decomposition technique was extended to discuss non-stationary response of non-linear oscillator under random excitation. The PDF of stochastic reponses is represented by a set of standardized multivariable orthogonal polynomials. According to the Galerkin scheme, the original problem, which has to solve the Fokker–Planck–Kolmogorov (FPK) equation, was converted to a first-order linear ordinary differential equation, in terms of unknown time-dependent coefficients. Then, stationary and non-stationary PDFs of uncertainty responses were obtained. In numerical examples, first-order and second-order non-linear systems exposed to the Gaussian white noise were considered. Finally, the accuracy of the proposed method was demonstrated through appropriate comparisons to Monte-Carlo simulation and analytical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call