Abstract

By describing the gas breakdown phenomenon from the view of probability density function (pdf) estimation, a numerical calculation model is proposed to apply for the design of a 1 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$+$</tex-math> </inline-formula> n-type multistage gas spark switch (GSS). The physical principle, numerical calculation model, design procedures, and experimental test for GSS are hence described in considerable detail in the text. Various key operating parameters for GSS, that is, nontrigger rate <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\xi $</tex-math> </inline-formula> , error breakdown rate <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\chi $</tex-math> </inline-formula> , mean breakdown voltage, and breakdown voltage jitter <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sigma $</tex-math> </inline-formula> , are deduced from the calculation model. Optimization of operation parameters helps to design reliable compact GSS for pulsed power systems. The validity of the calculation model is verified and its suitability to a more general switch design is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call