Abstract
Understanding the propagation characteristics and driving factors from meteorological drought to hydrological drought is essential for alleviating drought and for early warning systems regarding drought. This study focused on the Weihe River basin (WRB) and its two subregions (the Jinghe River (JRB) and the middle reaches of the Weihe River (MWRB)), utilizing the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) to characterize meteorological and hydrological drought, respectively. Based on Copula theory and conditional probability, a quantification model for the propagation time (PT) of meteorological–hydrological drought was constructed. The dynamic characteristics of PT on annual and seasonal scales were explored. Additionally, the influences of different seasonal meteorological factors and underlying surface factors on the dynamic changes in PT were analyzed. The main conclusions were as follows: (1) The PT of meteorological–hydrological drought was characterized by faster propagation during the hot months (June–September) and slower propagation during the cold months (December to March of the following year); (2) Under the same level of hydrological drought, as the level of meteorological drought increases, the PT of the drought shortens. The propagation thresholds of meteorological to hydrological drought in the WRB, the JRB, and the MWRB are −0.69, −0.81, and −0.78, respectively. (3) In the dynamic changes in PT, the WRB showed a non-significant decrease; however, both the JRB and the MWRB exhibited a significant increase in PT across different drought levels. (4) The influence of the water and heat status during spring, summer, and winter on PT was more pronounced, while in autumn, the impact of the basin’s water storage and discharge status was more significant in the JRB and the MWRB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.