Abstract

Key mechanical properties used in low-cycle strength and durability calculations are the strength (proportional limit stress, σpr; relative yield strength, σ0.2; and ultimate tensile stress, σu) and strain properties (proportional limit strain, epr; percent area reduction, ψ; and percent area reduction at failure, ψu). When selecting the key mechanical properties provided in the specifications, an error may be made due to the failure to account for a series of random factors that determine the distribution of properties. The majority of research papers dealing with statistical descriptions of the low-cycle strain properties do not look deeper into the distribution of mechanical properties and the diagram parameters of strain characteristics. This paper provides a description of the distribution patterns of mechanical properties, statistical parameters, and low-cycle fatigue curves. Log-normal distribution generated the lowest values for the coefficient of variation of one of the key statistical indicators, suggesting that log-normal distribution is superior to normal or Weibull distribution in this respect. The distribution of low-cycle strain parameters exceeded the distribution of mechanical properties considerably. Minimum coefficients of variation of the parameters were generated at normal distribution. The statistical analysis showed the lower distribution of the durability parameters compared to the distribution of parameters of the strain diagrams. The findings of the paper enable a revision of the durability and life of the structural elements of in-service facilities subject to elastoplastic loading by assessing the distribution of mechanical characteristics and low-cycle strain parameters as well as the permissible distribution limits.

Highlights

  • Contemporary transport engineering facilities operate at high speeds, high productivity, and high capacities to achieve the best performance

  • This paper provides a description of the distribution patterns of mechanical properties, statistical parameters, and low-cycle fatigue curves

  • Log-normal distribution generated the lowest values for the coefficient of variation of one of the key statistical indicators, suggesting that log-normal distribution is superior to normal or Weibull distribution in this respect

Read more

Summary

Introduction

Contemporary transport engineering facilities operate at high speeds, high productivity, and high capacities to achieve the best performance. The application of appropriate probability calculation methods is important in the pursuit of extended life for in-service facilities They contribute to more accurate and research-based determinations of the safety values of cyclic loads at the design phase. Based on the topics discussed above, the main contributions of this paper are as follows: (1) We determine the distribution patterns of the mechanical properties, statistical parameters, and low-cycle fatigue curves; (2) we perform an analysis of the statistical assessment of cyclic elastoplastic strain diagrams and of the parameters; (3) we refine the low-cycle strength and durability calculations based on the verified values rather than standard values of key mechanical properties; and (4) we present a comparison of the low-cycle fatigue probability curves of the experimental data

Materials and Methods
Sk ψ
Weibull s
MPA ψ ψu
Pi s
Findings
Greek symbols γ reliability of normal distribution
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.