Abstract

It is argued that probability should be defined implicitly by the distributions of possible measurement values characteristic of a theory. These distributions are tested by, but not defined in terms of, relative frequencies of occurrences of events of a specified kind. The adoption of an a priori probability in an empirical investigation constitutes part of the formulation of a theory. In particular, an assumption of equiprobability in a given situation is merely one hypothesis inter alia, which can be tested, like any other assumption. Probability in relation to some theories - for example quantum mechanics - need not satisfy the Kolmogorov axioms. To illustrate how two theories about the same system can generate quite different probability concepts, and not just different probabilistic predictions, a team game for three players is described. If only classical methods are allowed, a 75% success rate at best can be achieved. Nevertheless, a quantum strategy exists that gives a 100% probability of winning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.