Abstract

For the largest class of physical systems having a classical analog, a new rigorous, but not probabilistic, Lagrangian version of nonrelativistic quantum mechanics is given, in terms of a notion of regularized action function. As a consequence of the study of the symmetries of this action, an associated Nœther theorem is obtained. All the quantum symmetries resulting from the canonical quantization procedure follow in this way, as well as a number of symmetries which are new even for the case of the simplest systems. The method is based on the study of a corresponding Lie algebra and an analytical continuation in the time parameter of the probabilistic construction given in paper I of this work. Generically, the associated quantum first integrals are time dependent and the probabilistic model provides a natural interpretation of the new symmetries. Various examples illustrate the physical relevance of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.