Abstract

The computational power of stochastic chemical reaction networks (CRNs) varies significantly with the output convention and whether or not error is permitted. Focusing on probability 1 computation, we demonstrate a striking difference between stable computation that converges to a state where the output cannot change, and the notion of limit-stable computation where the output eventually stops changing with probability 1. While stable computation is known to be restricted to semilinear predicates (essentially piecewise linear), we show that limitstable computation encompasses the set of predicates in \(\Delta^0_2\) in the arithmetical hierarchy (a superset of Turing-computable). In finite time, our construction achieves an error-correction scheme for Turing universal computation. This work refines our understanding of the tradeoffs between error and computational power in CRNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.