Abstract

Probabilities of spontaneous rovibronic transitions I 1Π g − , v′ J′, J 1Δ g − , v′, J′→C 1Π u ± , v″, J″ of the D2 molecule (for vibrational and rotational quantum numbers v′=v″=0–3 and J′=1–9, J″=J′±1) have been obtained for the first time. They were determined using (1) the previously proposed nonadiabatic model, which takes into account the electron-rotational interaction of the upper levels; (2) the coefficients of expansion of wave functions of perturbed states in the Born-Oppenheimer basis, which were found from the experimental data on rovibronic terms; and (3) semiempirical b initio data on electronic transition dipole moments of the 3dπ1Πg→2pπ1Πu and 3dπδ1Δg→2pπ1Πu transitions. The dependences of the transition probabilities on J′ for the same bands of both hydrogen isotopomers H2 and D2 were found to be identical. They represent monotone functions for R and P branches and functions with a maximum (minimum) for Q branches. The ratios of transition probabilities of different isotopomers for different branches of the same systems of bands and for the same branches of different systems of bands were found to be correlated. The semiempirical values obtained in the paper agree with the experimental values within the limits of the errors of their determination. The nonempirical values of transition probabilities agree with the experiment considerably worse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call