Abstract

Motor unit firing rates in human muscle can be determined from recordings made with small-diameter microelectrodes inserted directly into the muscle during voluntary contraction. Frequently, these counts are pooled to give an average motor unit firing rate under a given set of conditions. Since the fibers of one motor unit are dispersed among the cells of several others, it is conceivable that discharge rates can be measured in more than one cell from the same unit. If this occurred frequently, the distribution of firing rates could be influenced by those from units counted more than once. Based on literature values, we made the following assumptions: vastus lateralis contains approximately 300 motor units, with an average innervation ratio of 1500. Muscle cell diameter is about 50 to 100 microns and cells are randomly distributed over a motor unit territory of 10 microns diameter. The recording range of a microelectrode is about 600 microns. Given the distribution of cells normally found in whole human muscle, the probability of recording from two or more cells of the same motor unit at 50% MVC follows a Poisson distribution with a mean of 0.44. This model suggests that although there is a low probability of some duplication in this technique, the extent to which it influences the distribution of average motor unit firing rates is minimal over the entire range of forces produced by vastus lateralis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call