Abstract

Stochastic hybrid systems have several applications such as biological systems and communication networks, but it is difficult to consider control of general stochastic hybrid systems. In this paper, a class of discrete-time stochastic hybrid systems, in which only discrete dynamics are stochastic, is considered. For this system, a solution method for the optimal control problem with probabilistic constraints is proposed. Probabilistic constraints guarantee that the probability that the continuous state reaches a given unsafe region is less than a given constant. In the propose method, first, continuous state regions, from which the state reaches a given unsafe region, are computed by a backward-reachability graph. Next, mixed integer quadratic programming problems with constraints derived from the backward-reachability graph are solved. The proposed method can be applied to model predictive control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.