Abstract
In this paper we investigate nilpotenct and probabilistically nilpotent Hopf algebras. We define nilpotency via a descending chain of commutators and give a criterion for nilpotency via a family of central invertible elements. These elements can be obtained from a commutator matrix A A which depends only on the Grothendieck ring of H . H. When H H is almost cocommutative we introduce a probabilistic method. We prove that every semisimple quasitriangular Hopf algebra is probabilistically nilpotent. In a sense we thereby answer the title of our paper Are we counting or measuring anything? by Yes, we are.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.