Abstract

Bayesian model averaging (BMA) is a statistical method for post-processing forecast ensembles of atmospheric variables, obtained from multiple runs of numerical weather prediction models, in order to create calibrated predictive probability density functions (PDFs). The BMA predictive PDF of the future weather quantity is the mixture of the individual PDFs corresponding to the ensemble members and the weights and model parameters are estimated using forecast ensembles and validating observations from a given training period. A BMA model for calibrating wind speed forecasts is introduced using truncated normal distributions as conditional PDFs and the method is applied to the ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service and to the University of Washington Mesoscale Ensemble. Three parameter estimation methods are proposed and each of the corresponding models outperforms the traditional gamma BMA model both in calibration and in accuracy of predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.