Abstract

The general modular Bayesian procedure is applied to provide a probabilistic tsunami hazard assessment (PTHA) for the Messina Strait Area (MSA), Italy. This is the first study in an Italian area where the potential tsunamigenic events caused by both submarine seismic sources (SSSs) and submarine mass failures (SMFs) are examined in a probabilistic assessment. The SSSs are localized on active faults in MSA as indicated by the instrumental data of the catalogue of the Italian seismicity; the SMFs are spatially identified using their propensity to failure in the Ionian and Tyrrhenian Seas on the basis of mean slope and mean depth, and using marine geology background knowledge. In both cases the associated probability of occurrence is provided. The run-ups were calculated at key sites that are main cities and/or important sites along the Eastern Sicily and the Southern Calabria coasts where tsunami events were recorded in the past. The posterior probability distribution combines the prior probability and the likelihood calculated in the MSA. The prior probability is based on the physical model of the tsunami process, and the likelihood is based on the historical data collected by the historical catalogues, background knowledge, and marine geological information. The posterior SSSs and SMFs tsunami probabilities are comparable and are combined to produce a final probability for a full PTHA in MSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call