Abstract

The December 2004 Sumatra-Andaman earthquake emphasized the need for a consistent and comprehensive assessment of tsunami hazard. The authors have developed a method for Probabilistic Tsunami Hazard Analysis (PTHA) based on the traditional Probabilistic Seismic Hazard Analysis (PSHA) and therefore completely consistent with standard seismic practice. In lieu of attenuation relations, it uses the summation of finite-difference Green’s functions that have been pre-computed for individual subfaults, which enables one to rapidly construct scenario tsunami waveforms from an aggregate of subfaults that comprise a single large event. For every fault system, it is then possible to integrate over sets of thousands of events within a certain magnitude range that represents a fully probabilistic distribution. Because of the enclosed nature of ports and harbors, effects of resonance need to be addressed as well, which is why this method has been extended to not only analyze exceedance levels of maximum wave height, but also of spectral amplitudes. As in PSHA, these spectral amplitudes can be matched with the spectral response of harbors, and thus allow a comprehensive probabilistic analysis of tsunami hazard in ports and harbors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.