Abstract

Mobile robots build on accurate, real-time mapping with onboard range sensors to achieve autonomous navigation over rough terrain. Existing approaches often rely on absolute localization based on tracking of external geometric or visual features. To circumvent the reliability issues of these approaches, we propose a novel terrain mapping method, which bases on proprioceptive localization from kinematic and inertial measurements only. The proposed method incorporates the drift and uncertainties of the state estimation and a noise model of the distance sensor. It yields a probabilistic terrain estimate as a grid-based elevation map including upper and lower confidence bounds. We demonstrate the effectiveness of our approach with simulated datasets and real-world experiments for real-time terrain mapping with legged robots and compare the terrain reconstruction to ground truth reference maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.