Abstract
Frequent sequence mining is well known and well studied problem in datamining. The output of the algorithm is used in many other areas like bioinformatics, chemistry, and market basket analysis. Unfortunately, the frequent sequence mining is computationally quite expensive. In this paper, we present a novel parallel algorithm for mining of frequent sequences based on a static load-balancing. The static load-balancing is done by measuring the computational time using a probabilistic algorithm. For reasonable size of instance, the algorithms achieve speedups up to $\approx 3/4\cdot P$ where $P$ is the number of processors. In the experimental evaluation, we show that our method performs significantly better then the current state-of-the-art methods. The presented approach is very universal: it can be used for static load-balancing of other pattern mining algorithms such as itemset/tree/graph mining algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.