Abstract

Clay-related subsidence is Great Britain’s (GB) most damaging soil-related geohazard, costing the economy up to £500 million per annum. Soil-related geohazard models based on mineralogy and potential soil moisture deficit (PSMD) derived from historic weather data have been used in risk management since the 1990s. United Kingdom Climate Projections (UKCP09) suggest that regions of GB will experience hotter, drier summers and warmer, wetter winters through to 2050. As a result, PSMD fluctuations are expected to increase, exacerbating the shrinkage and swelling of clay soils. A forward-looking approach is now required to mitigate the impacts of future climate on GB’s built environment. We present a framework for incorporating probabilistic projections of PSMD, derived from a version of the UKCP09 stochastic weather generator, into a clay subsidence model. This provides a novel, national-scale thematic model of the likelihood of clay-related subsidence, related to the top 1–1.5 m soil layer, for three time periods; baseline (1961–1990), 2030 (2020–2049) and 2050 (2040–2069). Results indicate that much of GB, with the exception of upland areas, will witness significantly higher PSMDs through to the 2050s. As a result, some areas with swelling clay soils will be subject to proportionately increased subsidence hazard. South-east England will likely incur the highest hazard exposure to clay-related subsidence through to 2050. Potential impacts include increased incidence of property foundation subsidence, alongside deterioration and increased failure rates of GB’s infrastructure networks. Future clay-subsidence hazard scenarios are beneficial to many sectors, including: finance, central and local government, residential property markets, utilities and infrastructure operators.

Highlights

  • Clay-related subsidence is the most damaging soil-related geohazard in Great Britain (GB; England, Scotland and Wales) costing up to £500 million per annum (Forster and Culshaw 2004; Pugh 2002)

  • The aim of this study was to supplant historical potential soil moisture deficit (PSMD) data in Natural Perils DirectoryTM (NPD) with projections computed from weather generator (WG) data

  • The analysis cannot take into account consecutive years, PSMD being reset to zero each January

Read more

Summary

Introduction

Clay-related subsidence is the most damaging soil-related geohazard in Great Britain (GB; England, Scotland and Wales) costing up to £500 million per annum (Forster and Culshaw 2004; Pugh 2002). Clay-related subsidence or heave results from specific clay soils shrinking and swelling, responding to wetting and drying conditions, respectively (Corti et al 2011). This leads to vertical and horizontal ground movement, caused by volumetric change in soil mass, which can cause significant damage to infrastructure and property founded within the soil. The susceptibility to which clay soils shrink and swell is controlled by their mineralogy and seasonal moisture flux (Reeve and Hall 1978) It is the magnitude and frequency of this seasonal moisture flux, or potential soil moisture deficit (PSMD), which governs the damaging nature of clay-related shrink-swell cycles. Unlike acute geohazards (e.g., flooding and landslides), impacts from clay-related shrinkage and swelling are chronic processes, with PSMD developing over many months or seasons (Corti et al 2011)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call