Abstract

A sudden increase in pore water pressure causes the effective stress to decrease significantly, which in turn causes a loss of shear strength and the subsequent outcome of allowing the soil to behave as a liquid, resulting in soil liquefaction. Agartala, the capital of Tripura, is located in northeastern India, and the entire region is considered seismically active according to the seismic zoning map of India as per IS 1893:2002 (Part 1); the entire region is classified as Zone-V. Significant earthquakes have struck this region, including the 1897 Shillong and 1950 Assam earthquakes. The city is vulnerable to liquefaction due to alluvial soil and a low groundwater table. Several parameters are involved in assessing liquefaction potential in the deterministic method and have different input parameter uncertainties, resulting in inconsistent outcomes. As a result, evaluating liquefaction susceptibility requires a thorough probability approach that considers parameter uncertainty. In this work, the soil liquefaction potential of Agartala City is assessed using fuzzy logic and compared to the conventional Reliability technique using the first-order second-moment method. Soil liquefaction potential was properly calculated using both approaches for the 71 boreholes in and around Agartala city. The outcomes are shown as contour maps representing spatial variations of the probability of liquefaction at different depths. In this study, Fuzzy logic is used to model the relationships between different soil parameters, which can help better understand the soil\'s behaviour during liquefaction. This developed method can assess the vulnerability of liquefaction potential and select appropriate materials and construction processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call