Abstract

Latent variable (LV) models provide explicit representations of underlying driving forces of process variations and retain the dominant information of process data. In this study, slow features (SFs) as temporally correlated LVs are derived using probabilistic SF analysis. SFs evolving in a state‐space form effectively represent nominal variations of processes, some of which are potentially correlated to quality variables and hence help improving the prediction performance of soft sensors. An efficient expectation maximum algorithm is proposed to estimate parameters of the probabilistic model, which turns out to be suitable for analyzing massive process data. Two criteria are also proposed to select quality‐relevant SFs. The validity and advantages of the proposed method are demonstrated via two case studies. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4126–4139, 2015

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.