Abstract

In probabilistic slope stability analysis, the influence of cross correlation of the soil strength parameters, cohesion and internal friction angle, on the reliability index has not been investigated fully. In this paper, an expedient technique is presented for probabilistic slope stability analysis that involves sampling a series of combinations of soil strength parameters through a copula as input to an existing conventional deterministic slope stability program. The approach organises the individual marginal probability density distributions of componential shear strength as a bivariate joint distribution by the copula function to characterise the dependence between shear strengths. The technique can be used to generate an arbitrarily large sample of soil strength parameters. Examples are provided to illustrate the use of the copula-based sampling method to estimate the reliability index of given slopes, and the computed results are compared with the first-order reliability method, considering the correlated random variables. A sensitivity study was conducted to assess the influence of correlational measurements on the reliability index. The approach is simple and can be applied in practice with little effort beyond what is necessary in a conventional analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call