Abstract
The present paper introduces a novel speaker modeling technique for text-independent speaker identification using probabilistic self-organizing maps (PbSOMs). The basic motivation behind the introduced technique was to combine the self-organizing quality of the self-organizing maps and generative power of Gaussian mixture models. Experimental results show that the introduced modeling technique using probabilistic self-organizing maps significantly outperforms the traditional technique using the classical GMMs and the EM algorithm or its deterministic variant. More precisely, a relative accuracy improvement of roughly 39% has been gained, as well as, a much less sensitivity to the model-parameters initialization has been exhibited by using the introduced speaker modeling technique using probabilistic self-organizing maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TELKOMNIKA (Telecommunication Computing Electronics and Control)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.