Abstract

We present a self-organizing map model to study qualitative data (also called categorical data). It is based on a probabilistic framework which does not assume any prespecified distribution of the input data. Stochastic approximation theory is used to develop a learning rule that builds an approximation of a discrete distribution on each unit. This way, the internal structure of the input dataset and the correlations between components are revealed without the need of a distance measure among the input values. Experimental results show the capabilities of the model in visualization and unsupervised learning tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.