Abstract
We propose in this paper a new learning algorithm probabilistic self-organizing map (PRSOM) using a probabilistic formalism for topological maps. This algorithm approximates the density distribution of the input set with a mixture of normal distributions. The unsupervised learning is based on the dynamic clusters principle and optimizes the likelihood function. A supervised version of this algorithm based on radial basis functions (RBF) is proposed. In order to validate the theoretical approach, we achieve regression tasks on simulated and real data using the PRSOM algorithm. Moreover, our results are compared with normalized Gaussian basis functions (NGBF) algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.