Abstract

Probabilistic seismic soil-structure interaction (SSI) analysis was performed for the Mu¨hleberg Nuclear Power Plant Reactor and SUSAN Buildings in support of the seismic probabilistic saftety assessment of the plant. An efficient hybrid method, employing computer programs SASSI2000 and CLASSI presented in a companion paper, was used in this analysis. The method takes advantage of the capability of SASSI2000 to analyze embedded structures with irregular geometry and the computational efficiency of CLASSI to rapidly perform the SSI response analysis of large structure models. Fixed base finite element models of the buildings were first developed from which the structure geometry, nodal masses, natural frequencies, and mode shapes were extracted. The structure embedments were modeled using SASSI2000. Impedance functions and scattering vectors were calculated by imposing rigid body constraints to the embedded foundation. The fixed base structure dynamic properties and the foundation impedances and scattering functions were input to CLASSI to perform the response analysis. The probabilistic analysis was performed following the Latin Hypercube Simulation (LHS) approach documented in NUREG/CR-2015. Variables defined by probability distributions were sampled according to a stratified sampling approach. The combination of the parameters for each simulation was determined by Latin Hypercube experimental design. Variables in the LHS included the earthquake ground acceleration time histories, structure stiffness and damping, and soil stiffness and damping. Thirty response simulations were performed using CLASSI in which the variable values were randomly selected. The use of CLASSI has the advantage that the response analysis simulations can be executed in a fraction of the time that would be required with SASSI2000 alone. For each simulation, in-structure response spectra (ISRS) were calculated at selected locations in the buildings. Probabilistic distributions, described by the median and 84th percentile response spectra, were calculated from the thirty simulations. The probabilistic ISRS are subsequently used in the seismic fragility evaluations of selected essential equipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call