Abstract
Deterministic seismic slope stability design charts for cohesive–frictional ([Formula: see text]) soils are traditionally used by geotechnical engineers to include the effects of earthquakes on slopes. These charts identify the critical seismic load event that is sufficient to bring the slope to a state of limit equilibrium, but they do not specify the probability of this event. In this paper, the probabilistic seismic stability of slopes, modeled using a two-dimensional spatially random [Formula: see text] soil, is examined for the first time using the random finite element method (RFEM). Slope stability design aids for seismic loading, which consider spatial variability of the soil, are provided to allow informed geotechnical seismic design decisions in the face of geotechnical uncertainties. The paper also provides estimates of the probability of slope failure without requiring computer simulations. How the design aids may be used is demonstrated with an example of slope remediation cost analysis and risk-based design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.