Abstract

This study explores seismic performance of steel frame buildings with SMA-based self-centering bracing systems using a probabilistic approach. The self-centering bracing system described in this study relies on superelastic response of large-diameter cables. The bracing systems is designed such that the SMA cables are always stressed in tension. A four-story steel frame building characterized until collapse in previous research is selected as a case-study building. The selected steel frame building is designed with SMA bracing systems considering various design parameters for SMA braces. Numerical models of these buildings are developed by taking into account the ultimate state of structural components and SMA braces as well as the effect of gravity frames on lateral load resistance. Nonlinear static analyses are conducted to assess the seismic characteristics of each frame and to examine the effect of SMA brace failure on the seismic load carrying capacity of SMA-braced frames. Incremental dynamic analyses (IDA) are performed to compute seismic response of the designed frames at various seismic intensity levels. The results of IDA are used to develop probabilistic seismic demand models for peak inter-story and residual inter-story drifts. Seismic demand hazard curves of peak and residual inter-story drifts are generated by convolving the ground motion hazard with the probabilistic seismic demand models. Results show that steel frames designed with SMA bracing systems provide considerably lower probability of reaching at a damage state level associated with residual drifts compared to a similarly designed steel moment resisting frame, especially for seismic events with high return periods. This indicates reduced risks for the demolition and collapse due to excessive residual drifts for SMA braced steel frames.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call