Abstract

Permanent sliding displacement is a parameter that is used widely to evaluate the seismic performance of earthen slopes, and the inherent variability of soil strength parameters is considered simply using a logic tree in current practice. This study thus proposes a fully probabilistic framework to assess the seismic displacement hazard of earthen slopes by quantifying the inherent spatial variability of soil strength parameters. The framework incorporates the random field theory and a multiple quadratic response surface (MQRS) model into the fully probabilistic seismic sliding displacement hazard analysis. Random field theory was employed to characterize the spatial variability of soil parameters, and the MQRS model is proposed to estimate the yield acceleration (ky) of slopes in an efficient way. The performance of the proposed framework was demonstrated by slope examples. The results indicated that (1) the predicted ky values of the MQRS model are comparable with those computed by the traditional pseudostatic procedure, validating its accuracy in applications; (2) slope strength parameters exhibiting a weaker spatial variability (larger scale of fluctuation) yield a larger dispersion of ky and a larger displacement hazard; and (3) a larger displacement hazard is produced for soil parameters exhibiting weaker correlation between cohesion and friction angle. The proposed framework enables assessment of the probabilistic seismic displacement hazard of earthen slopes with proper consideration of the spatial variability of soil parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.