Abstract

The skill of probability density function (PDF) prediction of summer rainfall over East China using optimal ensemble schemes is evaluated based on the precipitation data from five coupled atmosphere-ocean general circulation models that participate in the ENSEMBLES project. The optimal ensemble scheme in each region is the scheme with the highest skill among the four commonly-used ones: the equally-weighted ensemble (EE), EE for calibrated model-simulations (Cali-EE), the ensemble scheme based on multiple linear regression analysis (MLR), and the Bayesian ensemble scheme (Bayes). The results show that the optimal ensemble scheme is the Bayes in the southern part of East China; the Cali-EE in the Yangtze River valley, the Yangtze-Huaihe River basin, and the central part of northern China; and the MLR in the eastern part of northern China. Their PDF predictions are well calibrated, and are sharper than or have approximately equal interval-width to the climatology prediction. In all regions, these optimal ensemble schemes outperform the climatology prediction, indicating that current commonly-used multi-model ensemble schemes are able to produce skillful PDF prediction of summer rainfall over East China, even though more information for other model variables is not derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.