Abstract

Probabilistic failure assessments for integrally bladed disks are system reliability problems where a failure in at least one blade constitutes a rotor system failure. Turbine engine fan and compressor blade life is dominated by High Cycle Fatigue (HCF) initiated either by pure HCF or Foreign Object Damage (FOD). To date performing an HCF life assessment for the entire rotor system has been too costly in analysis time to be practical. Although the substantial run-time has previously precluded a full-rotor probabilistic analysis, reduced order models make this process tractable as demonstrated in this work. The system model includes frequency prediction, modal stress variation, mistuning amplification, FOD effect, and random material capability. The model has many random variables which are most easily handled through simple random sampling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.